Strong jump-traceability 2

Noam Greenberg

Victoria University of Wellington

13th June 2012
SJT and randomness
Random and c.e. sets

We focus on c.e. sets in light of the inherent enumerability of strong jump-traceability.

Theorem (Diamondstone, Greenberg, Turetsky)

Every SJT set is computable from a c.e. SJT set.
Random and c.e. sets

Thesis: c.e. sets and random sets have very little in common.

- An incomplete c.e. set cannot compute a random set [Arslanov].
- A sufficiently random set cannot compute a (incomputable) c.e. set [Hirschfeldt, Miller for exact bounds].

But not all is lost.
Kučera’s programme

Theorem (Kučera)
Every Δ^0_2 Martin-Löf random set computes an incomputable c.e. set.

Q: what kind of random sets compute what kind of c.e. sets?

Theorem (Hirschfeldt,Nies,Stephan)
Every c.e. set computable from an incomplete ML-random set is *K-trivial*.

The converse is open (but wait for André’s talk).
The covering problem for SJT

Theorem (Kučera, Nies; Greenberg, Turetsky)

A c.e. degree is SJT if and only if it is computable from a Demuth random set.

The difference between Martin-Löf randomness and Demuth randomness is that when specifying components of the tests, we can change our minds a computably bounded number of times.
Lowness and randomness

We get a duality between a hierarchy of lowness notions of c.e. sets on the one hand, and of randomness (between Martin-Löf and weak 2-randomness) on the other.

- K-triviality corresponds to “Oberwolfach randomness” [Bienvenu, Greenberg, Kučera, Nies, Turetsky].
- Strong jump-traceability corresponds to Demuth randomness.

And the theme is that the strength of randomness is determined by what kind of approximations to the components of tests we allow.
What *many* random sets can compute

Theorem (Greenberg, Hirschfeldt, Nies; DGT)

The following are equivalent for a Turing degree α:

- α is computable from every ω-computably-approximable ML-random set;
- α is computable from every superlow ML-random set;
- α is SJT.

Theorem (Greenberg, Hirschfeldt, Nies)

The following are equivalent for a c.e. degree α:

- α is computable from every superhigh ML-random set.
- α is SJT.

So paradoxically, in the context of randomness, both superlowness and superhighness are notions of strength.
If A is SJT, then it is computable from every superlow random set.

Let Y be a superlow random set.

- Start following Kučera. The use of the planned reduction $A \leq_T Y$ begin with the identity. If $Y \upharpoonright_k$ changes at stage s, declare that $Y \upharpoonright_k$ should computes $A \upharpoonright_s$. (Modifying this, we see that Y can compute A with "tiny use", [Franklin,Greenberg,Stephan,Wu].)

- We use little boxes to verify that $\alpha = A_s \upharpoonright_n$ is an initial segment of A. The "weight" of α is $2^{-|\gamma|}$, where $\gamma \prec Y_s$ is currently used for computing α from Y. Use k boxes for strings of weight 2^{-k}.

- If $\alpha \not\in A$, then we will have to enumerate γ into a Solovay test. We need the total weight to be finite.
If A is SJT, then it is computable from every superlow random set.

- Use metaboxes (one for each possible weight), to ensure that we believe an erroneous string with weight 2^{-k} at most k times. Luckily, $\sum k2^{-k} < \infty$.

- When $Y|_k$ changes, we need to test a longer initial segment of A, and so need to run a new test - cannot use older boxes. If Y is superlow then we can tell in advance how many parallel tests we may need at each weight, and so how many boxes we need for each metabox.

- The reason for defining the use as we did is so that the k^{th} agent is only responsible for the latest version of $Y|_k$. The previous ones are passed over to $k - 1, k - 2, \ldots$.
If A is computable from every superlow random set, then A is SJT.

A “phantom golden run construction”: we construct a random set which does not exist.

Suppose A is computable from every superlow random set. We want to trace J^A.

- Start with a Π^0_1 class P_0 of randoms, and in the background, run the argument for the (super)low basis theorem: we get a sequence $P_0 = Q_0, Q_1, \ldots$, with Q_i deciding the jump on the i^{th} bit.
If A is computable from every superlow random set, then A is SJT.

- From this sequence, try to generate a trace for J^A. Given n and a possible computation $J^A(n)$, with use $\alpha \prec A$, pick some i (which depends on the required bound for the trace we are enumerating). Wait until $\alpha \prec \Phi_0(X)$ for every $X \in Q_i$, then believe. We will believe at most 2^i values (the number of possible versions of Q_i), hence the bound on the trace.

- While we wait, define P_1 to be the class of $X \in Q_i$ such that $\alpha \nless \Phi_0(X)$. Restart the process with P_1 and Φ_1. Cancel when A changes.

- If no level gives us a trace we let $\{Z\} = \bigcap P_n$. Then Z does not compute A. We string together the superlow basis construction to show that Z is superlow.
SJT and the c.e. degrees
First application: superlow cupping

Theorem (Greenberg, Nies; DGT)

Every SJT degree \(a \) is **superlow preserving**: for every superlow degree \(b \), \(a \lor b \) is also superlow.

Corollary (Diamondstone)

The notions of low cupping and superlow cupping differ in the c.e. degrees.
Lowness notions can often be partially relativised to obtain “weak reducibilities”. For example, K-triviality leads to \leq_{LR}, a relation which measures how well an oracle derandomises ML-random sets.

Definition (Nies)

Let $A, B \in 2^\omega$. Then $A \leq_{SJT} B$ if for every order function h, every A-partial computable function has a B-c.e. h-trace.

Question

Does \leq_{SJT} imply \leq_{LR}?
Definition

- A set \(A \) is **LR-hard** if \(\emptyset' \leq_{LR} A \).
- A set \(A \) is **SJT-hard** if \(\emptyset' \leq_{SJT} A \).

Theorem (Kjos-Hanssen, Miller, Solomon)

A Turing degree is LR-hard if and only if it is almost everywhere dominating.

Question (Nies, Shore, ...)

In the c.e. degrees, is there a minimal pair of LR-hard degrees?
Pseudojump operators

There are direct constructions of incomplete LR-hard and SJT-hard c.e. degrees. An indirect approach uses pseudojump inversion.

Definition (Jockusch, Shore)

A **pseudojump operator** is a function $J : 2^\omega \rightarrow 2^\omega$ such that for all $A \in 2^\omega$, $J(A)$ is uniformly c.e. in A and uniformly computes A. A pseudojump operator is increasing if for all A, $J(A) \geq_T A$.

Theorem (Jockusch, Shore)

For any pseudojump operator J there is a c.e. set A such that $J(A) \equiv_T \emptyset'$.

Question (Jockusch, Shore)

Can this be combined with upper-cone avoidance? Can one always invert to minimal pairs?

Partial answers by Downey, Jockusch, LaForte.
Restrictions on pseudojump inversion

Theorem (Downey, Greenberg)

There is no minimal pair of SJT-hard c.e. degrees. In fact, there is an incomputable c.e. set which is computable in every SJT-hard c.e. set.

Corollary

There is a natural, increasing pseudojump operator J_{SJT} which cannot be inverted to a minimal pair, or while avoiding upper cones.
No minimal pair

This is an “inverted” box-promotion argument. Suppose that both A_0 and A_1 are c.e. and SJT-hard. We want to build an incomputable c.e. set E below both A_0 and A_1.

- Friedberg-Muchnik actors will want to put a numbers into E. Such enumerations will require simultaneous permission from both A_0 and A_1.

- We can encourage A_i to change by changing the values of a partial $\Sigma^0_2 = \Sigma^0_1(\emptyset')$ function ψ and waiting for A_i to enumerate the current value in its trace T^{A_i} for ψ.

- If z is a 1-box – the bound on the trace is 1 – then every change in $\psi(z)$ forces a change in A_i below the use of enumerating the current value $\psi(z)$ in $T^{A_i}(z)$. We tie uses together so that this change permits a “follower” into E.
No minimal pair

- If z is a 2-box – we may need to ask twice before we get a change.
- But how do we get **simultaneous change** in A_0 and A_1? The only way is if we have 1-boxes on both sides.
- Boxes can be tied up by followers waiting to be realised. So the supply is limited.
- Box promotion is used to eventually manufacture 1-boxes from larger boxes. Again large metaboxes are used so that the gains from each promotion can be distributed to many mouths. See zig-zag picture.
Recall the question, “is there a minimal pair of c.e., LR-hard degrees?”. A solution may be found using the same technique.

- If every K-trivial degree is $\frac{1}{10} \log(n)$-jump traceable, then there is no minimal pair of LR-hard degrees.

(Recall that every K-trivial degree is $M \log n$-jump traceable for some M, but some K-trivial degree is not $o(\log n)$-jump traceable. So this is related to the problem of finding a combinatorial characterisation for K-triviality.)
The ideal SJTH♠ of all c.e. degrees which are reducible to all SJT-hard c.e. degrees is a new ideal in the c.e. degrees.

The extent of this ideal measures how restricted the construction of an incomplete SJT-hard c.e. set is.
Maximality

Question

Is the ideal SJTH♠ principal?

This question is difficult because the usual way for showing an ideal is not principal is by using... lower-cone avoidance.
An attempt at an answer

Theorem (Diamondstone, Downey, Greenberg, Turetsky)

SJTH♠ contains a superhigh set, but no SJT-hard set.

One hope is to use the superhighness hierarchy to obtain an answer.
Thank you