As his colleagues continued to develop the programming, Turing was free to focus on wider issues and on projects which could use the computer. The best-known of his Manchester publications introduced the ‘Turing test’, a way to define whether machines could think.

Turing also worked on a computer model of a chemical reaction-diffusion process which might explain the emergence of patterns in biological organisms. Turing’s research student, Bernard Richards, applied reaction-diffusion equations to spherical forms. As Turing expected, they produced the symmetrical ‘spines’ seen in microscopic sea animal called *Radiolaria*.

The Manchester Museum, a part of The University of Manchester, has created a free exhibition around Turing’s work on Morphogenesis. *Alan Turing and Life’s Enigma* is open until 18 November 2012.

For other local Turing events see www.turingmanchester.com.
In The University of Manchester, Turing was part of a remarkably creative community which drew heavily on war-time experiences. Turing committed suicide as a result of repressive attitudes towards homosexuality. The work he shared with Manchester colleagues is now acclaimed across the world.