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Carta da Presidência

Adriano Polpo
(UFSCar)

Caros leitores, gostaria de dar boas vindas ao
Victor Fossaluza (UFSCar) e também agradecê-lo
por ter aceito a tarefa de ser o editor deste boletim
para o biênio 2013-2014. Ele, em seu primeiro bole-
tim, nos traz um excelente texto de K. V. Mardia e
S. B. Cooper sobre o trabalho de Alan Turing. Sendo

assim, esperamos muito mais dele para os próximos
boletins!

Gostaria também de informá-los que o volume
com os anais do EBEB 2012 está dispońıvel em

XI Brazilian Meeting on Bayesian Statistics
(2012). Editores: J. M. Stern, M. de S. Lau-
retto, A. Polpo and M. A. Diniz. AIP Con-

ference Proceedings, volume 1490, editora AIP.
http://scitation.aip.org/dbt/dbt.jsp?KEY=APCPC
S&Volume=1490&Issue=1.

Boa leitura!
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1 Introduction

Enigmatic Alan Turing is known in different ways to different people, like in the story of the elephant and
the blind men. Most people have heard of the Turing Test for intelligent machines, but the pure mathematician

Figure 1: Elephant and the blind men (jainworld.com)

might be surprised to know that Turing made signif-
icant contributions to statistics, while all except the
biologists will be surprised to know that Turing’s most
cited paper deals with the mathematics of emergence
of patterns in nature. The 2012 centenary of Alan Tur-
ing’s birth has seen so many events around the world,
with books and papers on his life and work (he even ap-
peared on the cover of Nature), that the Turing legacy
is now much better known, at least in academic cir-
cles. Below we look briefly at Turing’s contribution to
statistics, his innovative introduction of Bayesian tech-
niques to cryptography during the 2nd World War –
and how the statistics relates to Turing’s underlying
interest in how the world computes. If the mathemati-
cian imagines that Turing knocked off some statistics as a mere ad hoc diversion from the serious business of
founding computer science, inventing artificial intelligence and revolutionising developmental biology, she would
be missing something basic.

Figure 2: Alan Turing, copyright Beryl Turing

Various important statistical contributions by Turing at
Bletchley Park (in 1940-1941) have been recorded by Jack
Good (who was main statistical assistant in 1941 to Turing).
Good worked with Turing among others in breaking the enigma
code; Good (1979) recorded “their” contributions. The article
was subsequently elaborated in the commentary to this arti-
cle by himself in the collected works of Turing (Britton,1992).
Recently, a wonderful and readable account has been given
in the Book by Mcgrayne (2011) with an up to date his-
tory of Bayesian methods. The work has used a combina-
tion of several new methods including: 1. Weight of evi-
dence (assigning a tiny non-zero to a rare event which could
appear in a larger sample), and 2. Alignment of letters (pairs
and triplets of letters in the cipher with substitutions). These
are the two main new methods but other methods were Markov
Chains, Decision Theory, and Statistical Computing (see, for ex-
ample, Good, 1992). Since various different statistical methods
were used, it will be perhaps right to label these techniques as
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“Enigmatic Statistics”. The style of developing focussed tech-
niques foreshadowed the style of what is now called Statistical

Bioinformatics.
It is now well known that the Enigma was a cryptographic (enciphering) machine used by the German

military during WWII. The German navy changed part of the Enigma keys every other day. One of the im-
portant cryptanalytic attacks against the naval usage was called Banburismus, a sequential Bayesian procedure
(anticipating sequential analysis).

2 Weight of evidence and Empirical Bayes

Suppose that a random sample is drawn from an infinite population of animals of various species, or from a
population of words. Let the sample size be N and let nr distinct species be each represented exactly r times
in the sample, so that Σrnr = N , and nr can be called “the frequency of the frequency r”.

It can be shown that an estimate of the total probability of unseen species is

n1/N .

The work required for obvious reasons calculating the probability that the next word sampled will be one that
has not previously been observed. Turing, using what is called an urn model in statistics, showed that the
expected population frequency of a species represented r times is about (r + 1)nr+1/(Nnr).

The technique is now known as Good–Turing frequency estimation. For a more exact statement, including
the need for smoothing the nr’s, and for numerous elaborations and deductions see Good (1953, 1969) and
Good and Toulmin (1956). This work is an example of the empirical Bayes method.

In Banks (1996, p.10, col 2)) Good says “For example, I deduced a simple formula for the probability that
the next word sampled will be one that has not previously been observed. Makers of dictionaries and teachers
of languages ought to know about this work, because it tells you the minimum size of vocabulary required to
cover, say, 98% running text.”

That is, this work tells you the minimum size of vocabulary (say 98%) that would cover most of the (number
of) words most likely to be used; useful for the makers of Dictionaries.

We quote from Robinson (2011): “Suppose a birder spotted 180 different species, many of which were
represented by only one bird. Logically, other species must have been missed. A frequentist statistician would
count those unseen species as zero, as if they could never be found. Turing, by contrast, assigned them a tiny
non-zero probability, thereby factoring in that rare letter groupings might not be present in his current collection
of intercepted messages but could appear in a larger sample.”

The Bayesian approach to statistics treats unknown parameters as random variables, and prior distributions
model information about parameters. In contrast, the classical approach to statistics has no need of prior
distributions as it treats unknown parameters as fixed constants. Empirical Bayes is an approach to statistics
that lies somewhere between the two. Unknown hyper-parameters in Empirical Bayes are treated as fixed
constants (as are the parameters in the classical approach) but in general these are estimated from data unlike
in the standard Bayesian approach. For further details on this theme and related theme of odds and probability,
weights of evidence, Bayes theorem, some real and insightful examples, we refer to Aitken(1995) and Efron
(2010).

3 Alignment of letters

3.1 Description of the coding in Enigma

Before Banburismus could be started on a given day it was necessary to identify which of nine ‘bigram’
(or ‘digraph’) tables was in use on that day. In Turing’s approach to this identification he had to estimate
the probabilities of certain ‘trigraphs’. (These trigraphs were used, as described below, for determining the
initial wheel settings of messages.) For estimating the probabilities, Turing invented an important special
case of the nonparametric (nonhyperparametric) Empirical Bayes method independently of Herbert Robbins.
The technique is the surprising form of Empirical Bayes in which a physical prior is assumed to exist but no
approximate functional form is assumed for it.

Robinson (2011): “A crucial example of the application of the theorem was Turing’s cracking of the German
naval cipher Enigma during the Second World War, which played a key part in the Allied victory in 1945. After
the war, Turing’s wartime assistant, I. J. ‘Jack’ Good, wrote about Turing’s Bayesian technique for finding
pairs and triplets of letters in the cipher.” Adding: “To avoid censorship under the UK Official Secrets Act, he
described it in terms of bird watching.”

Good (1992) has given a stage by stage process in coding by Enigma. Let a real message (a triplet sequence)
to be coded.
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1. The operator would first choose a triplet, say XQV, as a system discriminator, from a table.
2. Next he would set the three wheels at positions G1, G2, G3, which was part of the daily keys
3. At this initial position of the wheels G1, G2, G3, he would encipher his selection M1,M2,M3 (the setting for
the real triplet) and obtain the enciphment LRP , say.
4. The six letters XQV and LRP would be further encrypted by the following procedure which does not use
the Enigma.
5. First the six letters would be written one under the other at a stagger as

XQV
-LRP

6. Then two letters would be chosen haphazardly to fill a two by four rectangle as (A and L here)

XQVA
LLRP.

7. Then the four vertical pairs XL,QL, V R and AP would be encrypted with the help of a secret printed pairs
table, giving, say,

PTOW
XUBN

8. Finally PTOWXUBN would be the first two groups, the “indicator groups”, of the enciphered message.
9. There were ten pairing (digraph) tables and which one was to be used would be part of the daily keys.

Each digraph table was reciprocal; for example, if XL became PX, then PX would become XL. This again
was helpful both for the encrypter and the cryptanalyst.

3.2 The significance of alignment of letters

From the description above, it is clear that alignments of letters was a critical step in breaking the code.
The idea is somewhat similar to alignment of DNA and protein sequences (see, for example, Durbin (1995).
Indeed,the DNA connection has been mentioned in various writings the following: Robinson (2011 “Turing, by
contrast, assigned them a tiny non-zero probability, thereby factoring in that rare letter groupings might not
be present in his current collection of intercepted messages but could appear in a larger sample. The same
technique was later adopted in DNA sequencing and by artificial-intelligence analysts.” We have inserted
BOLD lettering for “sequencing”.

Good (1992, p.214) says “The game of Banburismus involved putting together large numbers of pieces of
probabilistic information somewhat like the reconstruction of DNA sequences.”

4 Turing’s Statistics in Context

This work of decoding is a very early successful story of interdisciplinary research. Perhaps this is somewhat
different from the early days of the subject, when the statisticians such as Galton and R.A.Fisher played a
leading role in interdisciplinary research. It seems that with the floods of large-scale data, computer scientists
and statisticians with computing skills have a major part in creating impact.” Mardia and Gilks (2005) have
named this approach Holistic Approach which is more and more now required.

4.1 Statistics and levels of abstraction

As Turing’s mentor Professor Max Newman (1955) observes, Turing was far from being a detached theo-
retician, describing Turing as “at heart more of an applied than a pure mathematician”. Turing’s engagement
with how the world ‘computes’ is visceral, with David Leavitt (2006) portraying Turing as identifying with his
computing machine abstractions.

His respect for the complexity of the world as information emerges in his interest in type theory, which seeks
to clarify the way in which mathematical objects can occupy different ‘levels of abstraction’ — for instance,
describing integers as of type 0, reals as of type 1, sets of reals (or geometrical shapes) as type 2, and so
on. Clarity about type was exploited by Bertrand Russell to rescue early 20th century mathematics from the
paradoxes. While in the real world, statistics provides a fundamentally important route to reducing scientific
entities of apparent higher type to data which we can handle computationally. As we know, every computer
today is an embodiment of Turing’s universal computing abstraction, and these cannot comfortably cope with
data above the level of type 1.
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Figure 3: Mandelbrot set, courtesy of Niall Douglas

A typical example of type reduction, with consequent
computational accessibility, is provided by the Mandelbrot
set. As the set of complex numbers the mathematics pro-
vides (a type 2 object) the question of its computability is
an open question. But a little mathematics gives us a digi-
tal approximation representable digitally on our computer
screen — hence the plethora of beautiful images on the
web, and that accompanying this article. Of course, the
sampling process is not interesting enough to be termed
“statistics”, any more than the image of our family via a
digital camera is. But it does exhibit a level of computabil-
ity that any sampled reality will have. As we saw from the
elephant and the blind men, in general there is an art to
sampling and interpretation, that on the one hand reduces
complex information to useful data, and on the other de-
livers a recognisable approximation to truth. For higher
type information with very complex structure — for in-
stance chaotic or turbulent contexts, such as weather, or
economics, or coded messages, in which emergent non-

local phenomena are the objects of interest — the reduction may be fraught with difficulties. The statistics is a
challenge and an art, and this is what so engaged the creativity and genius of those working at Bletchley Park
in the early 1940s.

4.2 Scaling the informational hierarchy

So what is the link between Turing’s most abstract mathematics, his 1939 paper written in Princeton
under the guidance of Alonzo Church, and his hands-on practical involvement with real-world complexity of
information?

Back in the late 1930s, Turing was puzzled by the fact that Kurt Gödel’s Incompleteness Theorem told us
that even restricting our attention to the basic theory of the natural numbers — just a part of what we can
abstract from the real world — we discover that truth soon passes out of our control. Given any useable theory
containing basic arithmetic (one where we can computably recognise the axioms and rules of deduction) one
can easily write down a true statement not provable in it. Of course, thought Turing, this means one has an

inductive way of computably expanding the theory, so potentially defeating Gödel’s theorem. Turing succeeded
in carrying out a transfinite induction which did indeed take us into realms unknown. The process was refined
and equipped with more power in later years (by Sol Feferman, and Michael Rathjen) to take us to even dizzier
proof theoretic heights.

However, a key element in the inductive process was the choice of computable ‘fundamental sequences’ to
take us through limit points of the computable ordinals used to notate the tower of theories. The mathematical
difficulties in keeping control of the process are essentially those in evidence in complex real world situations only
handleable via statistical sampling. In tune with the subtleties of the statistical route to truth, the fundamental
sequence (the logician’s counterpart of the statisticians sampling procedure) gives a computable (but by no
means computably choosable) route up the informational mountain. And in the mathematics, one needs an
oracle providing more than computably derivable information to identify the route. On a real mountain, one
may need individual brilliance to get to the top — though once a route is identified it is computable, can be
shared, and others can subsequently follow it. Turing (1939) contains the famous quotation:

Mathematical reasoning may be regarded . . . as the exercise of a combination of . . . intuition and
ingenuity. . . . In pre-Gödel times it was thought by some that all the intuitive judgements of math-
ematics could be replaced by a finite number of . . . rules. The necessity for intuition would then be
entirely eliminated. In our discussions, however, we have gone to the opposite extreme and elimi-
nated not intuition but ingenuity, and this in spite of the fact that our aim has been in much the
same direction.

The mathematician interprets this as an explanation of the mismatch between the subjectively experienced
creative process leading to a new theorem, and the axiomatic proof she shares with her colleagues and students.
For the statistician, there is a very similar message. The approach to the informational mountain may be full
of uncertainty and theoretically rich devices: but success can be shared with others.

For the Enigma operator, the success of the coding process depended on having a computable route up the
informational mountain that was incomputable to the less well-equipped observer from afar. What the decoders
at Bletchley Park depended on was the human brain having hidden type-traversing resources, at times in the
form of statistical wizardry.
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5 Morphogenesis, Statistics and Alan Turing’s AI

Alan Turing’s final years at Manchester were very much taken up with approaches to higher type com-
putability. By then stored program computers, as anticipated by the 1936 Universal Turing Machine, were in
operation. This was already giving rise to a powerful paradigm of algorithmic ubiquity and a new digital age.
A whole range of ways of bridging the gap between what the by then actual computers could handle, and the
informational complexity of social and natural formation, was inhabiting Turing’s thoughts in the years running
up to June 7, 1954.

The work on morphogenesis (the emergence of form in nature) brought a reassertion of old certainties from
logic in an unexpected way. Turing was able to point to the definability of a range of natural formations via
descriptions (differential equations) based on computable causal relations from the underlying chemistry. This
gave explicit descriptions which led to computable solutions and computer generated simulations. Although
the mathematics pointed to the likelihood of more complicated instances – possibly differential equations with
incomputable solutions – the theory did point to type reduction via approximations built on explicit descriptions.

Figure 4: Colored diagram showing patterns of
dappling and calculations, made by Turing in con-
nection with work on morphogenesis. Courtesy of
P. N. Furbank

His lifelong preoccupation with human thought processes
took Turing in a very different direction. The famous Mind
paper adheres to the faith in the key role of the by then com-
mercially produced digital computer. But the key role of the
human judges in the implementation of the Turing Test for
machine intelligence is very significant. This, and the radio
broadcasts and the more popular talks and writings, show an
acceptance of complementary roles for humans and machines.
The role of mistakes, uncertainty, interaction, ‘common sense’
and, of course, the lessons of 1939 (‘intuition’) and Bletchley
Park (Bayesian methods) — all point to a world in which
logic and statistical methods work together, in complemen-
tary ways.

Since Turing’s passing in 1954, the history of artificial in-
telligence has tended to confirm this picture. There is more
and more a sense that the computer and the human mind
work in rather different ways. Today we are more and more
aware of the power and limitations of our computational tech-
niques. At the time, the main aim of Turing’s 1936 paper
was to demonstrate the inadequacy of algorithms and related
forms of reasoning. There is a growing sense that human
thinking has a much in common with statistical processes as
logical ones. This is good news for both humans and statis-
ticians! Maybe digital computers will not supersede brains.

But all those mistakes and the ‘weather in the brain’? The brain shares with statistics an ability to handle
large and complex assemblies of information. It is the algorithmic backbone that is provided by ever growing
computer power.

6 References

Aitken, C. G. G. (1995). Statistics and the Evaluation of Evidence for Forensic Scientists. John Wiley and
Sons.

Banks, D. L. (1996). A Conversation with I. J. Good. Statistical Science. 11, , 1–19.

Cooper, S.B. (2012). Turing’s Titanic machine? Communications of the ACM. 55 (3), 74–83.

Durbin, R., Eddy, S., Krogh, A. and Mitchison, G. (1998). Biological Sequence Analysis: Probabilistic Models

of Proteins and Nucleic Acids. Cambridge University Press.

Efron, B. (2010). Large-Scale Inference Empirical Bayes Methods for Estimation, Testing, and Prediction.

Cambridge University Press.

Good, I. J. (1950). Probability and the Weighing of Evidence. London: Griffin.

Good, I. J. (1953). The population frequencies of species and the estimation of population parameters.
Biometrika 40, 237-64.



BOLETIM ISBrA. Volume 5, Número 2, Dezembro 2012. 7
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Eventos

• Statistics2013 - The International
Year of Statistics
(http://www.statistics2013.org)

O ano de 2013 foi escolhido como o Ano In-
ternacional da Estat́ıstica, uma celebração mundial
em reconhecimento das contribuições da estat́ıstica.
Através de um esforço conjunto de diversas orga-
nizações mundiais, o Statistics2013 pretende pro-
mover a importância da estat́ıstica para a comu-
nidade cient́ıfica, estudantes, empresas, governo,
poĺıtica, mı́dia e o público em geral.

Os objetivos do Statistics2013 incluem a sensibi-
lização do público para o poder e o impacto das es-
tat́ısticas sobre todos os aspectos da sociedade; for-
talecer a estat́ıstica como uma profissão, especial-
mente entre os jovens; e promover a criatividade e
o desenvolvimento das áreas de probabilidade e es-
tat́ıstica. Um v́ıdeo de divulgação foi criado pelo
SAS Institute, retratando as muitas maneiras que a
estat́ıstica afeta nossas vidas.

Muitos eventos estão programados ao redor do
mundo e podem ser encontrados na seção Activities

do site do Statistics2013. Uma pequena amostra das

atividades é apresentada ao longo dessa seção.

• ISBA Regional Meeting and Inter-
national Workshop/Conference on
Bayesian Theory and Applications
(IWCBTA), Varanasi – Índia, 06 a 10 de
janeiro de 2013.
(http://www.bhu.ac.in/isba)

Esse evento será organizado pelo DST Centre

for Interdisciplinary Mathematical Sciences da Ba-

naras Hindu University (BHU), em conjunto com a
ISBA, Indian Bayesian Society (o caṕıtulo indiano
da ISBA), a American Statistical Association (ASA)
e o Institute of Mathematical Statistics (IMS).

O objetivo do evento é proporcionar um ambi-
ente onde jovens pesquisadores possam interagir com
pesquisadores de renome internacional, para pro-
porcionar o desenvolvimento de novas metodologias
para resolver problemas complexos. Para isso, im-
portantes pesquisadores da área foram convidados.
Entre eles estão James O. Berger (Duke University,
EUA), José M. Bernardo (Universitat de València,


